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The equat ions descr ibing the flow of a thin f luid layer  on the sur- 
face of a ro ta t ing solid of revolut ion in a f ixed set of coordinates a t -  
t ached  to the body were discussed in [1]. Retaining the  nota t ion  of [1], 
we shal l  confine our a t ten t ion  in the present note to a x i a l l y  symmet r i c  

flow. 
Analysis in  Eqs. (2. 3), (2.9),  and (2.10)  of [1], wri t ten  in the 

charac te r i s t i c  form, shows that  in the case of a nonstat ionary a x i a l l y  

symmet r i c  flow in a tube of f in i te  length  i t  is necessary to satisfy two 

boundary condit ions on the left ,  and one such condi t ion  on the right, 

if  the flow is subcr i t ica l ,  i .e . ,  vt  < 0~h) 1/2 , or three  boundary con-  
dit ions on the lef t  i f  the flow is supercr i t ica l ,  i .e .  v~ > 0r l /a  . 

It is in teres t ing to inves t iga te  the possible shapes of the free sur- 

face for a g iven  cho ice  of the boundary conditions in a s ta t ionary 

ax ia l ly  symmet r i c  flow. 

Let us set j = 0  a n d q = 0 i n E q s .  (2.3),  (2.9),  and (2.16),  and 

introduce the new va r i ab le  Q = vih. If we then in tegra te  the equat ion  
of continuity,  we obtain Q = c/R(x), where c = const. Equation (2.9)  
then assumes the form 

d ~ =  1--  h~ 8h~ hS] �9 (1) 

We now introduce the idea of the c r i t i c a l  depth, defined by the 

condi t ion :fh~ = Qz = cZ/R2 for g iven  Q. When h > h k i t  is super- 
c r i t ica l .  

Let us also introduce the quant i ty  

h =  g ~  

The depth h u satisfying the equat ion  

( h  + c~ ~ ) R ' - -  2 c / ~ c3 ~'/, 
8-~n~'-'~v2 § R~hn2] = 0  (2) 

.will be ca l l ed  the "normal  depth ."  
When k = 24/Re, which corresponds to l a m i n a r  flow in the layer ,  

we can write Eq. (2) in the form 

c 2 3~(? 
]lhn3 ~- ~ h n -  ~ = 0 , (3) 

This equat ion  has one real  and two i m a g i n a r y  roots. 

We note tha t  the concept  of the normal  depth is mean ingfu l  only 

for R' > 0, s ince for R' < 0 Eq. (3) has one rea l  root which is a lways  

negat ive .  Consider the funct ion 

(?2 3~C 
(I) (h)  = ] l h  3 "4- ~ h - -  ~ . 

Since @'(h) > 0, i t  follows tha t  4>(h) is a mono ton ica l ly  in-  

creasing function of h. Moreover, s ince  ~(hn)  = 0, i t  follows that  

g~(h) > 0 f o r h >  hn, a n d S ( h )  < 0 f o r h <  h n. The f u n c t i o n a l ( h ) =  
= f h  s _ Q2 vanishes at  the c r i t i ca l  depth h k and is also a mono ton ica l ly  

increas ing  function of h. Consequently,  ~ t (h)  > 0 for h > hk, and 

~l(h)  < 0 f o r h  < h k. 
In the case of turbulent  flows, the coef f ic ien t  k can  be de te rmined  

from a formula  such as, for example ,  

, (h) = F (h. 2). r (2) = 
20 ( ~  0 . 3 8 5 )  

F (h, 2) = - ~ lg -h- g v / ~ a  ~ , (4) 

which can be obta ined by e l e m e n t a r y  t ransformat ion  of the funct ion 

g iven  in [2]. Let us substitute k from Eq. (4) into Eq. (2). Since k 

is a posi t ive function, we may  conclude from the form of Eq. (2) that  

this  equa t ion  has no rea l  posi t ive  roots when R' > 0. From the form of 

the der iva t ive  

c ~ 2c ( e 2 \ V2 
r (h) = ]xh~ -'~ Ra 8RR" ~ zc" v~) ' 

we conclude  tha t  i t  is also a monotonic  function of h. Equation (1) can 

then be wri t ten  in the form 

dh /dx  = ~>/r l a m i n a r  flow, 

dh /dx  = r  turbulent  flow. 

Let R' > 0 and h n > h k. The flow can then occur  for depths h such 

tha t  

(a) h > hn > hlr (b) hn > h > h k, (e) hlc > h , 

In case (a) i t  is c lear  from Eq. (1) tha t  dh /dx  > 0, i .e . ,  the depth 

increases  during the flow. From Eq. (1) we have  

dh R" 
dx "~ ] / ' ~  as h - -*oo .  

In case (b) the depth continuously decreases,  and dh/dx  "-~ - ~ f o r  

h--> hk. 
In case (c) the de r iva t ive  dh /dx  is aga in  posi t ive and, moreover,  

dh/d$.-.* co as h - - * h  e .  

In the case of l a m i n a r  flow 

dh/d$---~3vR/c  as h - - ~ 0 .  

The  three possible forms of the free surface for R' > 0 and hn < hk 

can  be obta ined in a s imi la r  way. 

When R' = 0, Eq. (1) can  be rewri t ten  in the form 

dh kvvt / Q2 
- 

For depths grea ter  than the c r i t i c a l  value ,  the flow is such tha t  the 

depth continuously decreases,  and 

dh/dx --) - -  ,co as h --) h/r , 

For depths less than  the c r i t i c a l  values,  the flow is such that  its depth 

increases.  
For R' < 0, there are two possible forms of the free surface which 

are analogous to the case R' = 6. In fact,  Eq. (1) can  be wri t ten in the 

form 

dh dt 
dx ] - -  Q2 ] h~ ' 

where 

c 2 2 
+ -g-f vvl, RI' = - -  R ' ,  

is a function which is posi t ive everywhere.  
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