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The equations describing the flow of a thin fluid layer on the sux-
face of a rotating solid of revolution in a fixed set of coordinates at-
tached to the body were discussed in [1]. Retaining the notation of [1],
we shall confine our attention in the present note to axially symmetric
flow,

Analysis in Eqs. (2. 3), (2.9), and (2.10) of [1], written in the
characteristic form, shows that in the case of a nonstationary axially
symmetric flow in a tube of finite length it is necessary to satisfy two
boundary conditions on the left, and one such condition on the right,
if the flow is subcritical, i.e., v; < (fh)l/ 2 , or three boundary con-
ditions on the left if the flow is supercritical, ie, vy > (fh)l/ ‘.

It is interesting to investigate the possible shapes of the free sur-
face for a given choice of the boundary conditions in a stationary
axially symmetric flow.

letus set j =0 and g = 0 in Egs. (2, 3), (2.9), and (2.10), and
introduce the new variable Q = vili. If we then integrate the equation
of continuity, we obtain Q = ¢/R(x), where ¢ = const, Equation (2. 9)
then assumes the form
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We now introduce the idea of the critical depth, defined by the
condition fhf< =Qf = /R for given Q. When h > hy it is super-
critical,
let us also introduce the quantity
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The depth hy satisfying the equation
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will be called the "normal depth,”
When A = 24/Re, which corresponds to laminar flow in the layer,
we can write Eq. (2) in the form

c? 3ve
fihe® + gl —

=0, 3)
This equation has one real and two imaginary roots,

We note that the concept of the normal depth is meaningful only
for R* > 0, since for R' < 0 Eq, (3) has one real root which is always
negative, Consider the function
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Since &'(h) > 0, it follows that &(h) is a monotonically in-
creasing function of h, Moreover, since ®(hp) =0, it follows that
&(h)y > 0 for h > hp, and ®(h) < 0 for h < hy, The function &;(h) =
= fh3 - @ vanishes at the critical depth hk and is also a monotonically
increasing function of h, Consequently, &y(h) > 0 for h > hk, and
®y(h) < 0 for h < by,

In the case of turbulent flows, the coefficient A can be determined
from a formula such as, for example,
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which can be obtained by elementary transformation of the function
given in [2]. Let us substitute X from Eq. (4) into Eq. (2). Since A
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is a positive function, we may conclude from the form of Eq. (2) that
this equation has no real positive roots when R' > 0, From the form of
the derivative
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we conclude that it is also a monotonic function of h, Equation (1) can
then be written in the form

dh/dx = ®/®, laminar flow,
dh/dx = &,/®, turbulent flow,

Let R' > 0 and hy > hy. The flow can then occur for depths h such
that
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In case (a) it is clear from Eq, (1) that dh/dx > 0, i.e,, the depth
increases during the flow, From Eq. (1) we have

dh R
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In case (b) the depth continuously decreases, and dh/dx—> —eofor
h—hy.

In cage (c) the derivative dh/dx is again pesitive and, moreover,

dhidz — o0 as h— k.
In the case of laminar flow
dhide—3vR/e as h—0,

The three possible forms of the free surface for R' > 0 and hp < hk
can be obtained in a similar way,
When R* =0, Eq. (1) can be rewritten in the form
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For depths greater than the critical value, the flow is such that the
depth continuously decreases, and

dhide - — o0 a8 h— k.

For depths less than the critical values, the flow is such that its depth
increases,

For R* < 0, there are two possible forms of the free surface which
are analogous to the case R' = 0. In fact, Eq, (1) can be written in the
form
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where
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is a function which is positive everywhere,
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